
CS395T: Foundations of
Machine Learning for
Systems Researchers
Fall 2025

Lecture 2: Gradient Computation
in

Abstract Neural Networks

Optimization of DNNs: Turing Award citations (2018)

2

Backpropagation: In a 1986 paper, “Learning Internal
Representations by Error Propagation,” co-authored with
David Rumelhart and Ronald Williams, Hinton
demonstrated that the backpropagation algorithm allowed
neural nets to discover their own internal representations of
data, making it possible to use neural nets to solve
problems that had previously been thought to be beyond
their reach. The backpropagation algorithm is standard in
most neural networks today.

Improving backpropagation algorithms: LeCun proposed an
early version of the backpropagation algorithm (backprop)
and gave a clean derivation of it based on variational
principles. His work to speed up backpropagation
algorithms included describing two simple methods to
accelerate learning time.

Goal of this lecture

• Standard presentations of back propagation in neural networks
• Biological metaphors like neurons and synapses come in the way
• Properties of activation functions are distraction
• Chain rule of calculus: not obvious how to use it for complicated networks

• Presentation in this lecture
• Abstraction for neural networks: parameterized programs
• Gradient computation

• Abstraction (what?): sum over paths
• Implementation (how?): compositional algorithm on dataflow graph representation

• Handles complicated neural networks
• Nonlinear functions like sin(x), cos(x), sin(cos(x)), ecos(x)

• Arbitrary DAGs including skip connections and weight sharing
3

Organization

● Basics:
– Partial derivatives, gradients, Jacobians

– Linear regression:
> Parameter optimization: solving linear systems

– Neural networks: parameter optimization requires solving non-linear systems
> Gradient descent

● Parameterized programs: abstraction for neural networks
– Dataflow graph representation

– Function evaluation: forward propagation

– Computing gradients: back propagation

– Parameter optimization using gradient descent

4

Basic concepts:
Partial derivatives, gradients, Jacobians (I)

• Convention:
• variables are written as capital letters (A,B,R0)
• variable values are written as corresponding small letters (a,b,r0)

• Partial derivative of R0 wrt A: !"#
!$

• Function that tells you how much R0 changes if A is changed a small amount
• Value of partial derivative depends on values of A,B,C (consider f(x) = x2)

• Notation: !"#
!$

𝑎, 𝑏, 𝑐 	is “value of partial derivative of R0 wrt A when input is 𝑎, 𝑏, 𝑐 ”

• If value of A changes from a to (a+Da), value of R0 changes by !"#
!$

𝑎, 𝑏, 𝑐 ∗ Δ𝑎

A

B

C
R1

R0
f

5

Basic concepts:
Partial derivatives, gradients, Jacobians (II)

• Gradient of R0: ÑR0
• Column vector containing partial derivatives of R0

• If input changes from (a,b,c) to (a+Da, b+Db, c+Dc), R0 changes by

• Jacobian of f: Jf
• Matrix whose columns are gradients of outputs

• If inputs change from (a,b,c) to to (a+Da, b+Db, c+Dc), outputs change by

A

B

C
𝑅%

𝑅#f

6

Parameter
optimization:

linear
regression

● Given set of n training data samples {(xi,yi)},
find “best” line Y = a+b*X for given data
– Model for training data

– Model parameters: a and b

– Generalization: model lets you predict y for x not
not in training sample

● Scoring a proposal (a,b): loss function
– Compute total square error/residual

– Detail: we use mean square error (L2 loss)

● Parameter values that minimize loss
– Conceptually, a big search problem

– Better solution: use gradients

> Set Ñ Loss(a,b) to zero

> Solve two linear equations

● Neural networks are more complicated
– Parameter optimization requires solving non-

linear equations

– Popular method: gradient descent

Karl Friedrich Gauss

7

Function minimization using gradient descent (I)

x f(x) f’(x)

8

• Problem: given function f(x), find x that minimizes f.
Assumptions:

• f has minimum and first derivative, but no closed-form
expression is available for function or derivative

• However, we can ask for the value of the function and its
derivative at any point

• In general, need iterative search

Function minimization using gradient descent (I)

• Pick some value of x (say 3) and find f(x) (say 9)
• To see if we have a minimum, find gradient (say 6)
• Gradient not zero, so not at minimum
• Good point to try next?

• Gradient gives us two pieces of information
• Sign:

• gradient is positive, so increasing x increases function value
Þ we should decrease x.

• Magnitude:
• if the magnitude of gradient is small, close to the minimum
Þ step size should be small

• if magnitude of gradient is large, may be far from minimum
Þ step size should be larger

• This suggests an iterative scheme of the form

y 9

x f(x) f’(x)

9

3 x

Function minimization using gradient descent (II)

• Problem: when magnitude of derivative is large, step size will be
big, and we may overshoot minimum
• Example: function is y = x2 and x0 is 3.
• May never converge

• Solution: change iterative scheme to
• 0<ai<1 is a sequence of numbers called learning rate
• Convergence to minimum if sequence satisfies Robbins-Munro

conditions

• Safe but slow solution: set ai to !
"

• Iterative scheme for multiple variable function:
• Gradient descent finds local minimum, may not be global minimum

x

y

3

9

Hao Li et al.
10

https://people.maths.ox.ac.uk/~gilesm/mc/stoch_sim/lec16.pdf
https://people.maths.ox.ac.uk/~gilesm/mc/stoch_sim/lec16.pdf
https://people.maths.ox.ac.uk/~gilesm/mc/stoch_sim/lec16.pdf
https://arxiv.org/pdf/1712.09913.pdf

Variations on theme (I)

• Rate of convergence
• How fast is gradient changing?

• Curvature: second-derivative (Hessian in higher dimensions)
• Noisy values and gradients: penalty for inaccuracy

• Batch normalization (BN) Ioffe & Szegedy 2015
• Reshape optimization landscape to avoid “valleys”

• Other iterative schemes (optimizers): Adagrad, Nesterov momentum, AdamW, ….
• https://www.slideshare.net/SebastianRuder/optimization-for-deep-learning

11

Ketan Doshi

x1 x1

x2 x2

https://arxiv.org/abs/1502.03167
https://optimization.cbe.cornell.edu/index.php?title=AdamW
https://www.slideshare.net/SebastianRuder/optimization-for-deep-learning
https://www.slideshare.net/SebastianRuder/optimization-for-deep-learning
https://www.slideshare.net/SebastianRuder/optimization-for-deep-learning
https://www.slideshare.net/SebastianRuder/optimization-for-deep-learning
https://www.slideshare.net/SebastianRuder/optimization-for-deep-learning
https://www.slideshare.net/SebastianRuder/optimization-for-deep-learning
https://www.slideshare.net/SebastianRuder/optimization-for-deep-learning
https://www.slideshare.net/SebastianRuder/optimization-for-deep-learning
https://www.slideshare.net/SebastianRuder/optimization-for-deep-learning
https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739

Computing Gradients
in

Programs

12

Multilayer Perceptron (MLP) Example

• Type: Inputs: x1..xp, outputs: y1..ym (all Â)
• Scalar view:

• Each edge wij performs a multiplication with a real-valued parameter
• These values are added followed by non-linear operation s such as tanh, ReLU etc.

(known as activation functions)
• Vector view:

• Input and output are vectors
• Each layer performs a dense matrix vector multiplication followed by pointwise (map)

non-linear operation s

Frank Rosenblatt (Cornell)
Inventor of Perceptron

13

Training MLPs
• Optimization problem f(W; x,y)

• What values of weights wij minimize loss for training data?

• Gradient descent
• Compute derivative of loss w.r.t each weight
• Use an optimizer from earlier discussion

• Usual presentation of gradient computation: chain rule
• Abstraction of MLP and more complex neural

networks: parameterized programs

14

Loss
yt

training
data

t

Parameterized program: running example

● Type of desired function: real x real à real

● Training data: set of N 3-tuples {(pi,qi,ti)}

● Model
– Composition of

> base functions fi (may be nonlinear such as tanh, sigmoid, sin, cos, …)
> parameters Wi: real; assume no weight sharing so each weight occurs

just once (VGGNet: 138 million parameters)

– Function written as R(w; pi,qi) where w is (w0,w1,w2)

● Parameter optimization
– Square error for training sample (pi,qi,ti) = (ti – R(w;pi,qi))2

– Goal: choose (w0,w1,w2) to minimize mean square error (L2 loss)
 Loss(w0,w1,w2) = !

#
 ∑"$!# (𝑡𝑖	 − 𝑅 𝑤; 𝑝𝑖, 𝑞𝑖) 2

15

Function R(P,Q) {
A = W0*P
B = f0(A,Q)
C = W1*B
D = W2*B
E = f1(C)
F = f2(D)
R = f3(E,F)
return R}

Parameter optimization

● Find derivatives of Loss wrt W0,W1,W2:
 Loss(w0,w1,w2) = !

"
 ∑#$!" (𝑡𝑖 − 	𝑅 𝑤; 	𝑝𝑖, 𝑞𝑖) 2

16

Function R(P,Q) {
A = W0*P
B = f0(A,Q)
C = W1*B
D = W2*B
E = f1(C)
F = f2(D)
R = f3(E,F)
return R}

Derivatives are complex, non-linear functions
so use gradient-descent for parameter optimization

Parameterized program as flow graph

• Useful to represent multiplication by
weights differently from functions fi
• Functions fi are fixed but weights

change during training

• Execution (forward propagation)
• Sequential: execute nodes in any

topological order
• Parallel dataflow: node executes when

inputs are available

• All values at intermediate points
(A,B,C,…) are stored
• Needed for gradient computations

17

f0

f1

f2
f3

P

Q

A
B

C

R

E

FD

W0 W1

W2

Function R(P,Q) {
A = W0*P
B = f0(A,Q)
C = W1*B
D = W2*B
E = f1(C)
F = f2(D)
R = f3(E,F)
return R}

Value of !𝑹
!𝑾𝟏

(𝒘; 𝒑𝒊, 𝒒𝒊)

• To find value of !"!(% (𝑤; 𝑝𝑖, 𝑞𝑖)
• Multiply values of partial derivatives of all vertices on path from W1 to R
• Multiply result by value of input to W1 (i.e., b)
• Result:

• Compute the product either forwards or backwards along path

• In general, given path
• p(h) = product of derivative values of nodes on h excluding X and Y
• p(h) = 1 for empty path or if there are no intermediate nodes

•
18

f0

f1

f2

f3

P

Q

A

B c + b*Dw1
e+b*Dw1*%&!%' (𝑐)

F
D

W0

W2
r + b*Dw1*!)%!* (𝑐) ∗

!)+
!, (𝑒)

C

E
R

w1 + Dw1

c
e

b

r

b* &'!
&(
(𝑐) ∗ &')

&*
(𝑒)

Value of !𝑹
!𝑾𝟏

(𝒘; 𝒑𝒊, 𝒒𝒊)

• In general, there is a DAG from vertex representing weight to the output
• Example: weight W0

• Value of partial derivative: sum over paths from vertex to output
• Enumerate all paths from weight to output and add up the contributions of all paths

• Notation: H(n): set of paths from node n to output
!"
!#$

𝑊;𝑝𝑖, 𝑞𝑖 = 𝑝𝑖 ∗ ∑!"#(%&)𝜋(ℎ)

• Intuition: derivatives make this a linear problem, so superposition of paths works

• Problems:
• Treats DAG like tree so could do exponential computation in size of DAG. More efficient solution?
• What order should we compute !"

! #$
(𝑤; 𝑝𝑖, 𝑞𝑖) , !"

! #%
(𝑤; 𝑝𝑖, 𝑞𝑖) and !"

! #&
(𝑤; 𝑝𝑖, 𝑞𝑖) ? 19

f0

f1

f2

f3

P

Q

A
B

C

R

E

FD

W0

W1

p*Dw0*()&
(*

𝑎, 𝑞 ∗ 𝑤1 ∗ ()+
(,

𝑐 ∗ ()-
(.

(𝑒, 𝑓) +
p*Dw0*()&

(*
𝑎, 𝑞 ∗ 𝑤2 ∗ ()/

(0
𝑑 ∗ ()-

(1
(𝑒, 𝑓)

W2

Efficient computation of all derivatives

• Compute derivative of output wrt every variable/edge ()
• Real number on each edge
• Derivatives of output wrt weights can be computed from this

• Traverse DAG in reverse topological order of variables for computation
• &3

&3 = 1
• Transfer functions to propagate derivative from function output to its inputs 20

f0

f1

f2

f3

P

Q

A
B

C
R

E

FD

W0 W1

W2
()&
(*

𝑎, 𝑞 ∗ (𝑤1 ∗ ()+
(,

𝑐 ∗ ()-
(.

(𝑒, 𝑓)
 + 𝑤2 ∗ ()/

(0
𝑑 ∗ ()-

(1
(𝑒, 𝑓))

1

𝜕𝑓3
𝜕𝐸 𝑒, 𝑓 ∗ 1

&')
&4

𝑒, 𝑓 ∗	1

𝜕𝑓1
𝜕𝐶 𝑐 ∗

𝜕𝑓3
𝜕𝐸 (𝑒, 𝑓)

𝜕𝑓2
𝜕𝐷 𝑓 ∗

𝜕𝑓3
𝜕𝐹 (𝑒, 𝑓)

w1*&'!
&(

𝑐 ∗ &')
&*
(𝑒, 𝑓)

w2*&'5
&6

𝑓 ∗ &')
&4
(𝑒, 𝑓)

Summary of derivatives computation

• At each point Q, compute vQ: Â where

 vQ = !9:;<:;!= 𝑊; 𝑝𝑖, 𝑞𝑖 = ∑>?@(=)𝜋(ℎ)

• Small tweak to handle weight-sharing

• Called back-propagation in ML
literature

• Vanishing and exploding gradients
• Multiplying sequence of small or

large numbers

21

Q
vQ

OutputWivin = 1

vin vout

x

v2out

vin

vin = (v1out+v2out)

vin = wi*vout and %)*+,*+%-# =
Output

vout*x

v1out

f
v1in

v1in = %&
%.

𝑥, 𝑦 *vout
x

voutvin
Y

Back to running example

● Optimization problem: choose Wi values to minimize loss
 Loss(w0,w1,w2) = %

A
 ∑BC%A (𝑡𝑖	 − 𝑅 𝑤; 𝑝𝑖, 𝑞𝑖) 2

Initialize weights to random values
for #epochs do {
 GradientVector = 0
 for each training sample (pi,qi,ti) do {
 perform forward propagation and compute
 perform backpropagation and compute weight derivatives
 update GradientVector with products}
 scale GradientVector by -2/N
 use GradientVector to update weights using gradient descent step
}

22

Function R(P,Q) {
A = W0*P
B = f0(A,Q)
C = W1*B
D = W2*B
E = f1(C)
F = f2(D)
R = f3(E,F)
return R}

Variations on theme (II)

– How many training data samples should we use before updating weights?
• (Batch) Gradient-descent: use entire training data set to compute gradient.

• Disadvantage: learn only after all training data has been processed.

• (Mini-)Batching: divide training data into subsets of size B, update weights after each subset
is processed and use as initial weights for next subset.

• Disadvantage: choosing B? 50-256 is common.

• Useful to randomize training data set

• Stochastic gradient-descent (SGD): B= 1. Can be noisier than previous approaches.

– Initialization: we assumed random initialization
• Can also exploit prior (domain knowledge)

• He initialization

• Xavier (Glorot) initialization

• Good discussion: https://arxiv.org/abs/1704.08863 23

N

B

https://arxiv.org/abs/1704.08863

Variations on theme (III)

Other loss functions
• Regularization: add a term that penalizes weights that are not “desirable”

Example: Loss(w0,w1,w2) = 2
3

 ∑4523 (𝑡𝑖	 − 𝑅 𝑊; 𝑝𝑖, 𝑞𝑖) 2 + l 𝑊 2

 Called ridge regularization: penalizes large weight values
 Many other forms of regularization
• Loss for classification problems

• KL-divergence, cross-entropy loss (see later)

24

Generalization to vectors, matrices, tensors

25

How to understand data with dogs
 Karl Stratos (Reddit post)

https://www.reddit.com/r/mathmemes/comments/v71cxc/how_to_understand_data_with_dogs_by_karl_stratos/

Generalization to vectors
(matrices, tensors are similar)

• Programs
• Inputs can be scalars or vectors, but output is still a scalar (loss)
• Weight matrices (need not be square)
• Function type: vector ® vector

• Compute gradients instead of derivatives
• Variable is vector of size n ® gradient of output wrt this vector is also vector of size n

• Intuition: each dimension of gradient vector is derivative of output wrt value in that dimension
• Transfer functions: Jacobians instead of derivatives

• Useful to know matrix derivatives notation 26

f0

f1

f2

f3
P

Q

A
B

C

R

E

FD

W0 W1

W2

1

n

B

https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf&ved=2ahUKEwjUlq_ms5OHAxUUG9AFHbzWBTcQFnoECDAQAQ&usg=AOvVaw2-gEURFNI1dDk06V90nZio

Transfer functions

• General function f
• vin = Jf *vout

• Linear function W
• Jf = WT

• vin = WT*vout

• Derivatives of output wrt weights in W (will be a matrix)

27

f
xm yn

vin vout

(Ä is outer-product)

(If w(i,j) changes a small amount,
how much does the output change?)

Transfer
Functions

(scalar and
vector)

28

W
vin = 1

vin vout

x

v2out

vin

vin = (v1out+v2out)

vin = w*vout

%)*+,*+
%-# =

Output
vout*x

v1out

f
v1in

v1in = %&%. 𝑥, 𝑦 *vout
x

vout
vin

Wvin = 1
vin vout

x

v2out

vin

vin = (v1out+v2out)

vin = WT*vout

%)*+,*+
%-

=

Output
vout Ä x

v1out

fvin
vin = Jf *vout

x
vout

vin

Y

Scalar case

Vector case

Summary
Abstraction for neural networks: parameterized programs
Gradient computation

• Abstractly (what?): sum over paths (important idea in Physics)
• Efficient computation (how?): compositional algorithm on

dataflow graph representation
Handles complex nonlinear functions like sin(x), sin(cos(x)), ecos(x)

Handles complex neural networks with weight-sharing and irregular
interconnections (such as “skip connections”) smoothly
With small caveat, handles conditional and loops as well
Example of backward dataflow analysis used in compilers

29

Path integral formulation
of quantum mechanics (Feynman)

30

