CS395T: Foundations of
Machine Learning for

Systems Researchers
Fall 2025

Lecture 2: Gradient Computation
in
Abstract Neural Networks

Optimization of DNNs: Turing Award citations (2018)

Backpropagation: In a 1986 paper, “Learning Internal
Representations by Error Propagation,” co-authored with
David Rumelhart and Ronald Williams, Hinton
demonstrated that the backpropagation algorithm allowed
neural nets to discover their own internal representations of
data, making it possible to use neural nets to solve
problems that had previously been thought to be beyond
their reach. The backpropagation algorithm is standard in
most neural networks today.

Improving backpropagation algorithms: LeCun proposed an
early version of the backpropagation algorithm (backprop)
and gave a clean derivation of it based on variational
principles. His work to speed up backpropagation
algorithms included describing two simple methods to
accelerate learning time.

Goal of this lecture

* Standard presentations of back propagation in neural networks
* Biological metaphors like neurons and synapses come in the way
* Properties of activation functions are distraction
* Chain rule of calculus: not obvious how to use it for complicated networks

* Presentation in this lecture
* Abstraction for neural networks: parameterized programs
* Gradient computation
* Abstraction (what?): sum over paths
* Implementation (how?): compositional algorithm on dataflow graph representation
* Handles complicated neural networks
* Nonlinear functions like sin(x), cos(x), sin(cos(x)), ec°s¥
* Arbitrary DAGs including skip connections and weight sharing

Organization

e Basics:
— Partial derivatives, gradients, Jacobians
— Linearregression:
> Parameter optimization: solving linear systems
— Neural networks: parameter optimization requires solving non-linear systems

> Gradient descent

e Parameterized programs: abstraction for neural networks
— Dataflow graph representation
— Function evaluation: forward propagation
— Computing gradients: back propagation

— Parameter optimization using gradient descent

Basic concepts:
Partial derivatives, gradients, Jacobians (l)

* Convention:
* variables are written as capital letters (A,B,R0)
* variable values are written as corresponding small letters (a,b,r0)

* Partial derivative of RO wrt A: ?;AO

* Function that tells you how much RO changes if Ais changed a small amount
* Value of partial derivative depends on values of A,B,C (consider f(x) = x?)

»

* Notation: ?;Ao(a, b, c) is “value of partial derivative of RO wrt A when inputis (a, b, ¢)

* Ifvalue of A changes from a to (a+Aa), value of RO changes by aal%o(a, b,c) * Aa

Basic concepts:
Partial derivatives, gradients, Jacobians (ll)

 Gradient of RO: VRO A

* Column vector containing partial derivatives of RO

B
IR0
0C Aa
« Ifinput changes from (a,b,c) to (a+Aa, b+Ab, c+Ac), RO changes by (VR0)"(a,b,c) = | Ab
Ac
. 0RO ORI
* Jacobian of f: J; 56}/%& 5%
* Matrix whose columns are gradients of outputs J; = —BO B
OGRO 0R1
dC

00 Aa

* If inputs change from (a,b,c) to to (a+Aa, b+Ab, c+Ac), outputs change by J;' (a,b,c) * | Ab
Ac
6

Parameter
optimization:
linear

regression

Given set of n training data samples {(x;yi)},
find “best” line Y = a+b*X for given data

— Model for training data
— Model parameters: aandb

— Generalization: model lets you predicty for x
notin training sample

Scoring a proposal (a,b): loss function
— Compute total square error/residual

— Detail: we use mean square error (L2 loss)

n

Loss(a,b) = %Z(yz — (a+bxz;))?

i=1
Parameter values that minimize loss
— Conceptually, a big search problem
— Better solution: use gradients

> SetV Loss(a,b) to zero

> Solve two linear equations

Neural networks are more complicated

— Parameter optimization requires solving non-
linear equations

— Popular method: gradient descent

~
iy
o=
O
o
=
QO
o n
5} V, > s)
FU\/ yi ©2 "2
> y>@® n
L) M S AY 2
inimize: Z (]"— })
. 1 M/
/ Least Squares Method 7 =1

y-intercept Xi

X (independent)

Karl Friedrich Gauss

nxa+ (X;x;) xb =Xy,

Function minimization using gradient descent (l)

X f(x) f(x)

V

* Problem: given function f(x), find x that minimizes f.
Assumptions:

* fhas minimum and first derivative, but no closed-form
expression is available for function or derivative

* However, we can ask for the value of the function and its
derivative at any point

* In general, need iterative search

Function minimization using gradient descent (l)

1% L=

* Pick some value of x (say 3) and find f(x) (say 9) dx
* To see if we have a minimum, find gradient (say 6)
* Gradient not zero, so not at minimum i

« Good point to try next? 3 X
* Gradient gives us two pieces of information
e Sign:
* gradientis positive, so increasing x increases function value * »
= we should decrease x.
* Magnitude: x__f(x) f(x)

* if the magnitude of gradient is small, close to the minimum
= step size should be small

* if magnitude of gradient is large, may be far from minimum
—> step size should be larger d

* This suggests an iterative scheme of the form 41 = z; — %(a:i)

Function minimization using gradient descent (ll)

Problem: when magnitude of derivative is large, step size will be 9]/ df
big, and we may overshoot minimum %(3) =6

» Example: functionisy = x?and x,is 3.

® May never converge |
. L df 3 X
Solution: change iterative scheme to i+1 = ¥; — ai%(xi)

* 0<a;<1is asequence of numbers called learning rate

* Convergence to minimum if sequence satisfies Robbins-Munro
conditions

[e.°] oo
E oy, = 00 E a2 < oo
i=0 i=0

» Safe but slow solution: setg;to %

lterative scheme for multiple variable function: Zi+1 = £; — a;V f(z;)

Gradient descent finds local minimum, may not be global minimum Hao Li et al.

10

https://people.maths.ox.ac.uk/~gilesm/mc/stoch_sim/lec16.pdf
https://people.maths.ox.ac.uk/~gilesm/mc/stoch_sim/lec16.pdf
https://people.maths.ox.ac.uk/~gilesm/mc/stoch_sim/lec16.pdf
https://arxiv.org/pdf/1712.09913.pdf

Variations on theme (l)

Features
X2 \" X2
X4 X, X, X X4
X;,—Mean;
Xi — 2 T
StdDev; .
Ketan Doshi

* Rate of convergence

* How fastis gradient changing?
* Curvature: second-derivative (Hessian in higher dimensions)

* Noisy values and gradients: penalty for inaccuracy

* Batch normalization (BN) loffe & Szegedy 2015

* Reshape optimization landscape to avoid “valleys”
* Other iterative schemes (optimizers): Adagrad, Nesterov momentum, Adam\V,
* https://www.slideshare.net/SebastianRuder/optimization-for-deep-learning

11

https://arxiv.org/abs/1502.03167
https://optimization.cbe.cornell.edu/index.php?title=AdamW
https://www.slideshare.net/SebastianRuder/optimization-for-deep-learning
https://www.slideshare.net/SebastianRuder/optimization-for-deep-learning
https://www.slideshare.net/SebastianRuder/optimization-for-deep-learning
https://www.slideshare.net/SebastianRuder/optimization-for-deep-learning
https://www.slideshare.net/SebastianRuder/optimization-for-deep-learning
https://www.slideshare.net/SebastianRuder/optimization-for-deep-learning
https://www.slideshare.net/SebastianRuder/optimization-for-deep-learning
https://www.slideshare.net/SebastianRuder/optimization-for-deep-learning
https://www.slideshare.net/SebastianRuder/optimization-for-deep-learning
https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739

Computing Gradients

In
Programs

Multilayer Perceptron (MLP) Example

" Output Layer Frank Rosenblatt (Cornell)

Input Layer Hidden Laver
Inventor of Perceptron

* Type: Inputs: x;..x,, outputs: y;..y, (all R)
* Scalarview:
* Each edge wj performs a multiplication with a real-valued parameter
* These values are added followed by non-linear operation o such as tanh, RelLU etc.
(known as activation functions)
* Vectorview:
* Input and output are vectors
* Each layer performs a dense matrix vector multiplication followed by pointwise (map)

non-linear operation o 13

Training MLPs

=:"' . | Loss —@

training
data

e >re

Optimization problem f(W; x,y)

* Whatvalues of weights W;; minimize loss for training data?

Gradient descent

 Compute derivative of loss w.r.t each weight

* Use an optimizer from earlier discussion
Usual presentation of gradient computation: chain rule
Abstraction of MLP and more complex neural
networks: parameterized programs

14

Parameterized program: running example

e Type of desired function: real x real = real

e Training data: set of N 3-tuples {(pi,qi,ti)}

Function R(PRQ) {
e Model A=WO0*P
— Composition of B= fO(A;Q)
> base functions /i (may be nonlinear such as tanh, sigmoid, sin, cos, ...) C=WT1"B
o . . . D = W2*B
> parameters Wi: real; assume no weight sharing so each weight occurs
just once (VGGNet: 138 million parameters) E=11(C)
— Function written as R(w; pi,qi) where w is (w0,w1,w2) F=12(D)
R = f3(E,F)
e Parameter optimization return R}

— Square error for training sample (pi,qi,ti) = (ti — R(w;pi,qi))?
— Goal: choose (w0,w1,w2) to minimize mean square error (L2 loss)
Loss(wO,w1,w2) = 1% YN (ti — R(w;pi, qi))?

15

Parameter optimization

e Find derivatives of Loss wrt WO,W1,W2:
Loss(wO,w1,w2) = 1% YN . (ti — R(w; pi, qi))?

0Loss
oW,

(UJ(), wiy, w2) —

0Loss
oW,

(UJO, wiy, w?) -

0Loss
OWy

(”U)(),U)l,wg) —

N

9 OR
_N izl(t’i - R(w7p27q)a—%(w’p“qz)
N
9 ‘ OR
_N i:1(t2- —R(3 Di z))8—‘/1/.1(11)7]725%)
N
— = (ti — R(wipi /o
=1

Vw R(w; D, q;)

Derivatives are complex, non-linear functions
so use gradient-descent for parameter optimization

Function R(PQ) {

A=WO0*P

B =10(A,Q)
C=W1*B
D=W2*B
E=11(C)
F=12(D)

R =f3(E,F)
return R}

16

Parameterized program as flow graph

Function R(P.Q) {

o A =WO*P

* Useful to represent multiplication by B = f0(A,Q)
weights differently from functions fi C=Wi'B

* Functions fi are fixed but weights Z:f';v(gB
change during training F=12(D)

. _) R = f3(E,F)
Execution (forward propagation) return R}

* Sequential: execute nodes in any
topological order WO W1

* Parallel dataflow: node executes when P M C f1

E
inputs are available f0 \
* Allvalues at intermediate points Q — / 3 R
(A,B,C,...) are stored D f2 F

* Needed for gradient computations W2

17

Value of

) OR ..
* Tofind value Ofm(W,pl,C[l)

W2

Multiply values of partial derivatives of all vertices on path from W1to R

Multiply result by value of input to W1 (i.e., b)

Result: | 4 9f1 o3
b* —=(c) x5~ (e)

Compute the product either forwards or backwards along path

* Ingeneral, given path h: X Y

nt(h) = product of derivative values of nodes on h excluding Xand Y

(W pL, qi)

D

f2

n(h) =1 for empty path or if there are no intermediate nodes

;—Wi(w;pi, qi) =bxm(W1 5 R)

F

* x0f1
r+b*Awl > (€) *

JE

O0E

(e)

18

f3 —®

Qo—/

p*AWO*L2 (a,q) » wi + () + Lo(e,) +
p*Awo*i%A (a,q) xw2 « L= afz = (d) » 6” Le.f)

* |n general, there is a DAG from vertex representing weight to the output
* Example: weight WO

f1E\
e

f2

* Value of partial derivative: sum over paths from vertex to output
* Enumerate all paths from weight to output and add up the contributions of all paths
* Notation: H(n): set of paths from node n to output
aR . .
3w Wi pi, qi) = pi * Xpepwoy T(h)
* Intuition: derivatives make this a linear problem, so superposition of paths works
* Problems:
* Treats DAG like tree so could do exponential computation in size of DAG. More efficient solution?
* What order should we compute (w; pi, qi), a(w1) (w; pi, qi) and W(W pi, qi) ? 19

H(WO)

Efficient computation of all derivatives

of1 of3
P&+ Lep
WO af3
P F@\Awl*%(c) i E\‘(e S
aC
! fO £3 R ®
Q ._.7/' afz / 1
2) - L)L 2 GRS
rwz o2y 82 W2
of2 of3
T2+ e
. aR OR OR
Compute derivative of output wrt everyvarlable/edge (= 51 56" B

* Realnumberoneach edge
* Derivatives of output wrt weights can be computed from this

* Traverse DAG in reverse topological order of variables for computation
R

. =

OR
* Transfer functions to propagate derivative from function output to its inputs 20

Summary of derivatives computation

* Ateach point Q, compute vo: R where ¢ Called back-propagation in ML Vo
ooutput .. literature
Vo= 9Q (W;pi, qi) = Zh&‘H(Q) n(h) Q
' . * Vanishing and exploding gradients
* Smalltweak to handle weight-sharing . Multiplying sequence of small or
large numbers
—@ Output Vin =1 X Wi . 0 Output i Output
Vin _,<g>_, Vin = Wi*Vy,: and “owi = Vout X
Vin Vout '
Vout &1
X _9of *
Vin = (V1 5uttV20ut) — V1 === (0 ¥) *Vour
Vin_’.< in out out A f Vout in" 5x ou
V2t Y

21

Back to running example

e Optimization problem: choose Wi values to minimize loss Function R(P.Q) {
Loss(wO,w1,w2) = z L (ti — R(w; pi, qi))? A= 0P
7R B =10(A,Q)
=~ Rlw; pi, 4:) R (w3 i,) C=W1*B
~ D =W2*B
E=11(C)
Initialize weights to random values F=72(D)
for #epochs do { -
GradientVector =0 R =13(EF)
for each training sample (pi,qi,ti) do { return R}

perform forward propagation and compute
perform backpropagation and compute weight derivatives
update GradientVector with products}

scale GradientVector by -2/N

use GradientVector to update weights using gradient descent step

22

Variations on theme (ll)

— How many training data samples should we use before updating weights? N

* (Batch) Gradient-descent: use entire training data set to compute gradient. LI 1 1 |

* Disadvantage: learn only after all training data has been processed.

* (Mini-)Batching: divide training data into subsets of size B, update weights after each subset
is processed and use as initial weights for next subset.

* Disadvantage: choosing B? 50-256 is common.
* Useful to randomize training data set
* Stochastic gradient-descent (SGD): B= 1. Can be noisier than previous approaches.
— Initialization: we assumed random initialization
* Can also exploit prior (domain knowledge)
* Henitialization
* Xavier (Glorot) initialization

* Good discussion: https://arxiv.org/abs/1704.08863

23

https://arxiv.org/abs/1704.08863

Variations on theme (lll)

Other loss functions
* Regularization: add a term that penalizes weights that are not “desirable”

Example: Loss(wO,w1,w2) = 1% Y (ti — R(W;pi,qi))?+ 1 |IW]|?
Called ridge regularization: penalizes large weight values
Many other forms of regularization

* Loss for classification problems
* KL-divergence, cross-entropy loss (see later)

24

Generalization to vectors, matrices, tensors

ScaL[aLr veCtOY

S

-

How to understand data with dogs
Karl Stratos (Reddit post)

25

https://www.reddit.com/r/mathmemes/comments/v71cxc/how_to_understand_data_with_dogs_by_karl_stratos/

Generalization to vectors
(matrices, tensors are similar)

f2 [F

B
w2 P

* Programs
* Inputs can be scalars or vectors, but output is still a scalar (loss)
* Weight matrices (need not be square)
* Function type: vector — vector

* Compute gradients instead of derivatives
* Variable is vector of size n — gradient of output wrt this vector is also vector of size n

* Intuition: each dimension of gradient vector is derivative of output wrt value in that dimension
* Transfer functions: Jacobians instead of derivatives

* Useful to know matrix derivatives notation o6

https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf&ved=2ahUKEwjUlq_ms5OHAxUUG9AFHbzWBTcQFnoECDAQAQ&usg=AOvVaw2-gEURFNI1dDk06V90nZio

Transfer functions

D
’ A Xl e . A 8Y1
xM y" Y, oYy d0utput
O f fCow Je=| B BT W g, =] 0
Yin Yout & % a 8“Y'n dO0utput
* General function f 0Xn 0Xp " 0Xy dY,

* Vin= Jf *_/out
* Linear function W @ W11X1 ++ c+r T WimXm

o Ji=WT Y2 = W21X1 + W22X2 + ... + WamXm

° _/in = WT*\—/OU'(.....
* Derivatives of output wrt weights in W (will be a matrix)

0(Output)
T OW = Vous ® X (® is outer-product)
d(Output) . : : (If w(i,j) changes a small amount,

) =V 1) %X
(:5) = Your (0) % x(j) how much does the output change?) 27

oW

Scalar case

W Vin = W*Vout
—V'. Output v, =1 _X,®_,
" Vin Vout —a (Ofpen) = Vout*x
owi

Transfer " Vi,
Functions Vin 0<: Vin = (V1outtV2out))D f e vi in=g_£(x»3’)*vout
V24t
(scalar and

Vector case

vector)

_ X W Vin = WT*_/out
—@ Output Vin=1 %
Vin
Vin Vout —6 ey = Vout ® X
ow
ﬂout

X
Vi %‘ Vin = (V1outV20u1) :5:0-» f H > Vin = Jf *Vout

Vout
V2.t

28

Summary

y & final(t) y & final(t)
°

® itall) _ initial(t) _

X X
Classical particle quantum particle

Path integral formulation
of quantum mechanics (Feynman)

Abstraction for neural networks: parameterized programs

Gradient computation
* Abstractly (what?): sum over paths (importantidea in Physics)

» Efficient computation (how?): compositional algorithm on
dataflow graph representation

Handles complex nonlinear functions like sin(x), sin(cos(x)), e°s®

Handles complex neural networks with weight-sharing and irregular
interconnections (such as “skip connections”) smoothly

With small caveat, handles conditional and loops as well

Example of backward dataflow analysis used in compilers

29

3
{
Y
{
!

cgesere O

e

